
Indicators for Self-Diagnosis:
Communication-based Performance Measures

Michael Rovatsos1, Michael Schillo2, Klaus Fischer2, and Gerhard Weiß1

1 Department of Informatics, Technical University of Munich,
Boltzmannstraße 3, 85748 Garching, Germany
{rovatsos, weissg}@informatik.tu-muenchen.de

2 German Research Center for Artificial Intelligence (DFKI),
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

{schillo, kuf}@dfki.de

Abstract. Multiagent systems (MAS) have found their way into industrial appli-
cations in recent years and appear to be one of the most promising technolo-
gies that originated in AI research in recent years. However, evaluation stan-
dards as they are common e.g. in the scheduling or database systems commu-
nities are largely amiss. In this paper, we proposecommunication-based perfor-
mance measurement(CBPM) as a new method that is particularly suitable for
open, communication-intensive MAS, and argue that it can be used as to de-
sign indicators for self-diagnosisby the MAS itself. The ability of such self-
diagnosis is a prerequisite for MAS with self-repairing and self-optimising prop-
erties required by theautonomic computingview. CBPM is based on the idea
that important aspects of the external behaviour of a MAS can be measured in
terms of the communication processes within them. We present different levels of
communication-based performance measurement: frequency analysis of perfor-
matives and analysis of complex message patterns. Several examples of analyses
of inter-agent communication based on FIPA-ACL and the contract-net protocol
in implemented, complex, market-oriented MAS demonstrate the usefulness of
our approach. We conclude that these performance measures provide useful in-
formation about MAS and pave the way for devising autonomic self-improvement
methods for these systems.

1 Introduction
In the last few years, multiagent systems (MAS) have been increasingly successful
in industrial applications [9], particularly as a paradigm used for systems that have
to operate in complex, dynamic, distributed domains. Recently,autonomic computing
[10] has been proclaimed as a new approach to industrial systems that are capable of
self-management, i.e. that haveself-configuring, self-healing, self-optimisingandself-
protectingcapabilities. It is believed that this can be achieved through a peer-to-peer
collaboration ofmanagersthat control the use of computational resources (databases,
networks, storage facilities, etc.), measure system properties and decide what steps to
take to improve performance, usability or security in the system.

From a MAS perspective, these managers can be seen as agents that observe the
system and take appropriate action. However, this can be particularly difficult inopen,
communication-intensivesystems (cf. Internet agents, ubiquitious computing) where
the internal design of system components is highly encapsulated and hence not always

accessible for manager agents. The increasing popularity of technologies such as Web
Services and open platforms for agent-based service deployment such as Agentcities
[1] calls for methods to measure and influence the behaviour of system resources at the
level ofcommunicationrather than direct control.

Starting from this observation, this paper develops methods forcommunication-
based performance measurement(CBPM) for MAS that are based on an analysis of
the communication processes that unfold during operation of these systems. We claim
that these measures have the potential to become valuableperformance indicatorswhen
such systems are analysed by manager agents, and that thisself-diagnosisis capable of
providing useful guidance in trying to meet external requirements such asself-repair
andself-optimisation. To this end, we propose several such performance measures and
illustrate their usefulness with practical examples.

The remainder of the paper is structured as follows: Section 2 describes briefly our
intuitions regarding communication-based performance measurement and the general
ideas behind it. Then, in Section 3, we introduce the generic model of MAS that we use
to define measures. Section 4 provides detailed definitions for the proposed performance
measures. This is followed by illustrative examples in Sections 5 and 6. Finally, we sum
up with a discussion in Section 7.

2 Why Communication-based Performance Measurement?

In the process of designing and developing software systems, developers have several
attributes of the final product in mind, such as e.g. availability, security, modifiability.
Ideally, software engineering methods should give off-the-shelf advice on how to pro-
ceed in the process of engineering the system in order to achieve these requirements.
This is a core aspect ofperformance engineering[5], where it is common practice to
distinguish between

– internal attributesof the product (i.e. those which can be measured purely in terms
of the product itself) and

– external attributesof the product (i.e. those which can only be measured with re-
spect to how the product relates to its environment).

In general, internal attributes are more domain-independent and easy to measure, which
does not hold for external attributes. Therefore, it is highly desirable to predict the val-
ues of external attributes (e.g. usability and comprehensibility) on the basis of measure-
ments regarding internal attributes (such as resource load, errors during stress testing,
etc). From the standpoint of autonomic computing, manager agents take over the role of
the performance engineer during operation of the system: they must measureinternal
attributes of the system (such as exchange of information between components, data
storage strategies etc.) to be able to predictexternalattributes, such as optimal respon-
siveness, data security, etc.

When dealing with open systems of communicating agents, managers are addi-
tionally confronted with systems in which the precise operation of computational sub-
processes (agents) cannot be predicteda priori: achieving effective measurement and
control is very difficult in the absence of full knowledge of the internal design of other
agents. It is therefore not surprising that the issue ofperformance measurementof MAS

has been largely avoided3 despite the fact that successful engineering methods have
been proposed for MAS in recent years by researchers in the field ofagent-oriented
software engineering[7, 13].

Effectively, all we are left with as a basis for performance measurement in open
MAS is thecommunicationobserved in the system, and this is the central idea behind
communication-based performance measurement(CBPM): to usecommunication data
between agents in the system as data material that is suitable for performance measure-
ment, and then defining appropriate measures for this kind of data. Thereby, we define
any data as communication that is either (a) a textual message passed between two or
more agents or (b) some (physical) action that an agent performs publicly, i.e. an action
that can be observed by at least one agent other than itself.

Although open systems “force” us to take such an approach by the encapsulation of
agent internal computation, two fundamental properties of MAS, namely that

– MAS are (usually) based on deliberative, knowledge-based agents, and that
– agents in MAS communicate using high-level languages such as KQML [8] or

FIPA-ACL [6]

also suggest that the approach offers severaladvantages:

1. Even if reliable mental models of the agents are not available in open systems, high-
level ACLs allow us to derive the states of social commitments, the intentions of
agents etc. to a certain degree. This is due to the semantics weimputeon the ACL
performatives – even if they are violated by agents, this will eventually become
evident in observable agent behaviour (e.g. if a promise is not kept). Thus, high-
level ACLs allow for a tracing of much more abstract types of interactions and
dependencies than, for example, low-level network communication.

2. This kind of measurement allows us to abstract from non-communicative properties
of the system so that we can immensely reduce the global complexity of the system.
Knowing that agents are able to process knowledge-level representations (of tasks,
environment states, etc.) allows us to ignore the details of their internal reasoning
(in fact, in open systems, we have no other choice); at the same time, we can expect
at least those aspects that are relevant to the interaction between components to
become visible in the contents of messages, and hence open to an analysis by the
manager agent (who is a knowledge-based agent in turn).

Motivated by these advantages, we need to identify and precisely define concrete mea-
sures. As a prerequisite for these definitions, we first introduce the underlying model of
MAS.

3 A Generic MAS Model

Our MAS consists of a set of agentsA = {a, b, c, . . .} (that need not be fixed over
time), which (among other things) are able to communicate with each other by using

3 Rare and only application-specific exceptions include work on resource management for grid
computing [3] or on mobile agents, where performance measures concentrate on computation
overhead for message passing and agent migration [4].

a speech-act based agent communication language (like KQML [8] or FIPA-ACL [6])
the semantics of which is accessible to every agent4.

Furthermore, we assume that the MAS has to perform tasks taken from a fixed set
of possible tasksT and that they “arrive” at the system at arbitrary points in time (they
may enter the system via some central “manager” agent or through different agents). To
allow for a more detailed evaluation, we assume that a real-valued measure

c : T → R

for the cost of the tasks is defined by the observer of the system that is measuring its
performance.

The general view that we have of such task-based MAS is that when tasks come
in, a negotiation process is initiated, which leads to either agreement or conflict. In the
case of agreement, agents agree on a coordinated joint plan which they then execute.
Otherwise, the task fails and the next task is processed. If agents reach consensus on
how to perform the task, they execute the joint plan, and enter additional negotiation
loops in case of further conflicts. Also, in some cases, plans may fail during execution.

In the following definitions, we will assume that a FIPA-ACL-subset of speech acts
is used by the agents and we will use a simplified syntax for messages of the format

performative(sender, receiver, content)

wheresender andreceiver are symbolic names for agents andcontent is either
some other message or some first-order logic formula. As the set of performatives we
define for the scope of this paper

performative ∈ { inform, inform done, inform ref,

agree, accept proposal, request,

cfp, reject proposal, propose,

failure, not understood, refuse}

which is a subset of the performatives defined by FIPA [6]. In real-world applications,
this set is usually extended or restricted according to the requirements of the interaction
protocols used.

Finally, and maybe most importantly, in all measures we define we will usemessage-
timeas the underlying time-scale, i.e. instead of measuring (real) time, we measure all
quantities with respect to thetotal number of messages(TNOM) that have occurred
during operation. In the following, let

M = {m1,m2, . . . mn}

denote the set of all messages (TNOM = |M |). If needed, we can partitionM into sets

MT = {mT1 , . . . mTni
}

4 Otherwise agents have to make huge efforts to ”understand” communication, a topic which
opens a whole new dimension of complexity and is not regarded here. However, obeyingse-
manticsby no means implies benevolence regardingpragmatics.

for taskT ∈ Tcurr whereTcurr ⊆ T is the set of past processed tasks (including the
task currently processed) such that

M =
⊎

T∈Tcurr

MT

The advantage that measuring messages offers compared to measuring time directly
is that we can (a) quantify communicative phenomena in relation to the total amount of
communication so as to assess their importance in the context of all ongoing communi-
cation, (b) neglect time spent on intra-agent reasoning, and hence be able to concentrate
on crucial (social) properties of the system. Although this is an abstraction, the loss of
accuracy can be neglected in many deployed systems, as the time spend for communi-
cation between agents (on different machines) dominates other processes.

4 Communication-based Performance Measures
4.1 Basic Measures
Basic measures rely on counting messages and atomic message types (i.e. certain per-
formatives) and are therefore the simplest CBPM measures that serve as a starting point
for any analysis of social system properties. The first measure we introduce ismessages
per task and cost(MPTC) and is computed by using the formula

MPTC =
∑

T∈Tcurr

MT

c(T)

Here the quantityMPTC reflects how much communication is “spent” on a task per
cost. In order to obtain comparable quantities ofMPTC, the numbers of messages
MT are normalised with the cost of the tasks, following the intuition that it is justified
for more expensive tasks to require more communication than cheaper ones. Normally,
we expect MAS to be operating most efficiently, for whichMPTC is minimal (except,
of course, ifMPTC takes onextremelysmall values which would mean that tasks are
completed or fail without almost any communication – in which case communication
does not make a difference or is not working properly).

This measure can be further refined by distinguishing assigned tasks between “failed”
and “successfully completed” tasks

Tcurr = Tsucc] Tfailed

and computing a “fail-fast” variant ofMPTC

ff MPTC = α ·
∑

T∈Tsucc

MT

c(T)
+ β ·

∑
T∈Tfailed

MT

c(T)

By using0 ≤ α � β ≤ 1 we can weigh the amount of communication spent on failed
tasks stronger than that spent on tasks successfully completed, thus implicitly expecting
effectively communicating agents (that minimiseff MPTC) to realise at an early stage
that a task cannot be completed.

Looking more closely at the properties of messages exchanged rather than only
counting them, we can determine the average usage of certain messagetypesif we

Type1

Type2

Type6

Type3

Type4

Type5

Fig. 1.A message type partition chart.

assume that the set of relevant performatives has been partitioned into such types ac-
cording to certain criteria. For the scope of this paper we suggest the following partition
for the list of performatives given above:

- Type1 = {request} for messages that indicate when agents require non-local
information from others,

- Type2 = {inform, inform done, inform ref} for messages that can only be
a reply to some question and hence indicate propagation of information among
agents, or are used for synchronisation,

- Type3 = {cfp, propose} to denote messages that indicate offers to accept a task
or calls for such offers,

- Type4 = {reject proposal, refuse} for messages that indicate whenType3
messages fail,

- Type5 = {accept proposal, agree} for messages that indicate whenType3
messages succeed, and finally

- Type6 = {not understood, failure} for messages indicating either messages
that are not understood or requests that cannot be handled.

In analogy to a frequency analysis of each performative (which we will come back to
later), we define themean message type usage (MMTU) to be

MMTU (x) =
1

|Tcurr |
∑

T∈Tcurr

|{m ∈ Mi|type(m) = x}|
|MT |

for x ∈ {Type1 ,Type2 ,Type3 ,Type4 ,Type5 ,Type6} to compute the average per-
centage of a certain message type per task. Using these values, a visualisation called
message type partition chartcan be derived that provides us with a message type pro-
file for a specific MAS as shown in the example in Figure 1. In this example, we are
dealing with a MAS in which the largest portion of all messages is spent on gather-
ing non-local information, i.e. agents are very busy attempting to obtain information
from their peers. The chart also reveals that many of these questions go unanswered
(MMTU (Type2) < MMTU (Type1)) so obviously “information exchange” is not ef-
ficient in this system (either questions are posed that cannot be answered, or agents
refuse to answer too often).

Apart from asking other agents, the agents in this system are also very busy offering
and asking for services (Type3), and these attempts are much more often unsuccessful
than successful (MMTU (Type4) > MMTU (Type5)). Quite often, there is no reac-
tion at all, which is reflected by

MMTU (Type4) + MMTU (Type5) < MMTU (Type3)

Obviously, such measurements are valuable starting points for improving system perfor-
mance. Moreover,MMTU can be easily further refined, which makes it a very flexible
and powerful measure. As an example, we might compute its value also depending on
task cost as in

MMTU (x , c1, c2) =
1

|T c1,c2
curr |

∑
T∈T c1,c2

curr

|{m∈Mi|type(m)=x}|
|MT |

where
T c1,c2
curr = {T ∈ Tcurr |c1 ≤ c(T) ≤ c2}

is the set of all tasks that whose cost lies in the interval betweenc1 andc2. This would
allow us to make more precise statements with respect to the distribution of message
types, and the same would be the case if we parametriseMMTU with e.g. certain
subsets of agents, of agent types, spatial regions in a network, etc.

4.2 Measuring complex message patterns
The measures introduced above already provide useful information about the amount of
communication and its distribution over classes of performatives, but they do not allow
for a syntacticanalysis of entire dialogues and protocols. To achieve such an analysis,
we introducemessage patternswhere we interpret sequences of messages as lists of
strings and use upper-case variablesA,B, . . . to denote messages or message fields that
may be referred to by later messages in the same sequence. Furthermore, we use∗ as a
wildcard symbol that stands for an arbitrary message sequence. For example, a pattern

p = [accept(A,B, do(A,X)), ∗, do(A,X)]

describes a set of messages that starts with an acceptance of agentA towards agentB
to perform actionX and ends withA actually performingX 5. Likewise,

q = [accept(A,B, do(A,X)), (¬do(A,X))n]

stands for the set of sequences in whichA does not fulfil its commitment for at leastn
steps after committing itself to doX.

Clearly, such patterns can be efficiently matched against messages in a message log.
Hence, for any such patternp we can measure the average length of its occurrence

mean length(p) =
1

Tcurr

∑
matches(m,p)∧m∈M

length(m)

5 Remember that this is only a communication if the execution ofX is observable for both
parties – the performativedo (which is not part of the language definition, in the sense of
FIPA-ACL) is used to signify such observable action execution.

wherematches(m, p) is a boolean function that returnstrue iff pattern p matches
message sequencem andlength(m) is the number of messages in sequencem. Alter-
natively, we can define thetask-relativeaverage length ofp as

mean length(p) =
1

Tcurr

∑
matches(m,p)∧m∈M

length(m)
|MT |

and, of course, also its frequency

frequency(p) =
|{m ∈ M |matches(m, p)}|

|M |

Average lengths and frequencies can be used to define a number of other useful per-
formance measures. For instance, consider a MAS in which agents exchange proposals
concerning a multiagent plan to execute a task and where their peers can eitheragree
to a proposed plan or reject a proposed plan byreject proposal. Assume further that
for a plan to be executed, all agents have to accept it. We can then define

pa =
⋂

Q∈A[propose(P,Q,X), ∗, accept(Q,P,X)],
pc =

⋃
Q∈A[propose(P,Q,X), ∗, reject(Q,P,X))]

as the set of sequences in whichall agents (at least oneagent)Q eventually accept/reject
P ’s proposalX. Accordingly, we can define

MTTA = mean length(pa),
MTTC = mean length(pc)

whereMTTA stands formean time to agreementandMTTC stands formean time to
conflict. Likewise, patterns can be defined for task allocation, resource allocation, con-
flict resolution, negotiation processes, etc. In particular, if a specific set ofinteraction
protocolsis used in the MAS, properties of enacted instances of these protocols can be
quantified, e.g. the number of bids in an auction, themean time to accepted bidetc.
Quite evidently, these kinds of measures can be superior when it comes to predicting the
behaviour of external attributes: if we considerresponsivenessas a required external at-
tribute in a parallel execution environment for agents, surelyMTTA is more expressive
thanTNOM , as probably many messages are sent in parallel while we are interested in
the length of the sequence until an agreement is reached.

5 Example 1: Evaluating Interaction Protocols
To see how applying measures of different complexity can be useful, we now demon-
strate the usage of the above classes of measures in the context of a practical and rele-
vant problem. Suppose a specificprotocol manager agentin the MAS has to decide
on the task assignment method used in the system, and that there are one hundred
task manageragents each of which needs to find abidder agentfor a task it has to
assign. Suppose for simplicity all bidder agents have identical capabilities, i.e. any bid-
der can execute any task in principle, yet only asingle task at a time and the com-
munication deadlines are at the same time. Assume further that the protocol manager
agent may choose between the contract-net protocol (CNP) [12] and the contract-net-
with-confirmation protocol (CNCP) (for a detailed description, see [11]). Let us further

ParticipantInitiator

not-understood

failure

inform-ref

inform-done

propose

refuse

cfp

reject-proposal

accept-proposal

ParticipantInitiator

not-understood

propose

refuse

cfp

reject-proposal

request

failure

inform-ref

inform-done

refuse

accept-proposal

agree

Fig. 2. Sequence diagrams for the contract-net (left) and contract-net-with-confirmation (right)
protocols.

suppose that he has tried both mechanisms on comparable problem instances. In a (rep-
resentative) experiment with our implemented system, theassigned tasks ratio(ATR)
(i.e. the ratio between tasks successfully assigned and the total number of tasks) was
1.0 using the CNCP while the CNP had anATR of only 0.65.

How is this possible? The sequence diagrams of the protocols (see Figure 2) do not
reveal the crucial difference in the sense that they could be used as the starting point
for an informed decision between the two protocols. Let us now apply the measures
introduced in the previous sections. First, we evaluateTNOM (20130 for CNP, 30768
for CNCP) and perform anMMTU analysis of the communication that occurred dur-
ing the experiments (Figure 3). Although it is obvious that the protocols influence the
occurrence of certain performatives, in this particular caseTNOM andMMTU bring
us no closer to an explanation why theATR of the CNCP is so much higher.

Remembering the message patterns of Section 4.2, we might look at pattern

p = [propose(A,B, X, {}), ∗, reject proposal(B,A,X)]

This means we search agent communication logs for unconditional proposals (side con-
dition is {}) implying resource allocations (i.e. commitments to be able to perform a
task in the future) which are followed by rejection and measuremean rejected resource
allocationsMRRA = frequency(p)6. And indeed, in our example we find thatMRRA
equalszero in the CNCP case, and0.35 in the CNP case. The former case indicates
that with the CNCP no resources are allocated before it is clear that they are going to be
used, while the latter represents the missing allocations expressed by the lowATR of

6 This is a simplified version of the pattern used forMTTC in which negotiation only occurs
between one manager and one bidder, and it is adapted to the needs of CNP-like negotiation
by additionally requiring the empty side condition.

cfp 32.5%

refuse

0.76%

request

1.1%

propose

32.5%

accept 0.3%

inform 0.3%

reject 32.2%

agree 0.3%

cfp 49.6%
refuse

49.1%

propose

0.5%

accept 0.3%
inform 0.3%

reject 0.2%

Fig. 3. Message type partition chart for the the same problem solved using CNP (left) and the
CNCP (right).

the CNP. This shows at a glance the superiority of the CNCP in the respect that it never
produces the sequence ”allocating resources”→ ”rejecting this allocation”.

This example illustrates that a more complex measure can explain the correlation
between an internal attributeMRRA and the external attributeATR when simpler mea-
sures, such asMPTC andMMTU are not.

6 Example 2: Evaluating the Optimal Amount of Communication
Next, picture the situation of a manager agent who maintains the platform on which
the above multiagent system is running, with the decision on using the CNCP instead
of the CNP already made due to the above considerations. To make the scenario more
interesting, assume that the manager agent has no control over the participating agents,
which we callclients(previously managers), andservice providers(previously bidders)
but it can set the standard protocol to be used. Of course, costs for providing a ser-
vice may vary, as may the price preferences of clients, i.e. there is no guarantee that
tasks get assigned at all. Also, suppose that, for reasons of publicity (and to raise ban-
ner advertisement prices), the platform owner is interested in having as many “deals
fixed” (tasks assigned) as possible. To reduce bandwidth, one of the parameters the
platform may prescribe to participating agents is the maximum number ofcontacted
agents, i.e. the maximal numbern of calls-for-proposals/proposals (for clients/service
providers, respectively). Now assume that the platform manager observes six different
series of MAS runs. In the first three runs, 100 service providers and 90, 100, and 110
clients participate withn = 10; in another three runs, the same configurations apply,
but nown = 20 allows for more communication. The platform manager agent, wants to
know whether the cost induced by doubling the admissible amount of communication
has paid off. To this end, it analyses the patterns

pp = [cfp(P,Q,X), propose(Q,P, Y), request(P,Q, Y)]
pr = [cfp(P,Q,X), ∗, refuse(Q,P,X)]
pd = [cfp(P,Q,X), ∗, accept proposal(Q,P, Y)]

pp represents situations in which a proposal is followed by a request, sequences that
matchpr represent “failures” of service providers (in which they cannot perform a task
although they bid for it because they committed to some other task in the meantime).
Sequences that matchpd, finally, mark “deals”, i.e. assigned tasks that are properly

r1 Clients
n 90 100 110
10 0.210.250.29
20 0.100.150.20

r2 Clients
n 90 100 110
10 0.510.610.69
20 0.500.670.75

Table 1.r1 andr2 in different simulations.

carried out. Table 1 shows the values of the following quantities in the six runs we
obtained from experiments in the described configurations:

r1 = frequency(pp) andr2 =
frequency(pr)
frequency(pp)

Two central observations can be made: while an increase of client population from
90 to 110 causes an increase in probabilityr1 (i.e. the ratio of proposals that are accepted
by the client) by less than 50% in then = 10 case (from 0.21 to 0.29), itdoublesr1 in
then = 20 case (from 0.10 to 0.20). Of course, it is only natural that if more clients are
present, the probability increases with which the price they are willing to pay is met by
some service provider. However, it looks as if being allowed to contact more potential
partners increases this probability super proportional, when a bigger choice of clients is
available.

On the other hand, the second table shows that the probabilityr2 of not being able
to perform a task although requested to do so by the client increasesstrongerin the case
of n = 20 (from 0.5 to 0.75) than ifn = 10 (from 0.5 to 0.69), which makes the benefits
of allowing for more communication smaller; at the end of the day,frequency(pd) =
0.044 in the case ofn = 20 while frequency(pd) = 0.084 in the case ofn = 10
(with 110 clients). In other words, doubling the amount of communication (and their
cost) leads to 98 assigned (and performed tasks), which is only little more than the 93
reached withn = 10.

Apparently, increasing the number of calls for proposals and proposals each agent
may make is not very advantageous, because it makes service providers send more
proposals than they are able to achieve tasks, which limits the benefits incurred by
increasing the number of “matches” between clients’ and providers’ prices.

Therefore, the platform manager should maybe look for alternatives to increasing
n if the number of participating clients increases, such as, for example, introducing
“matchmaking” agents that find suitable service providers for clients with less com-
munication. This is another example of how using CBPM as an analytical tool may
help meet design objectives that cannot be achieved by merely tuning the system in a
trial-and-error fashion.

7 Conclusion
In this paper, we suggestedcommunication-based performance measurement(CBPM)
for multiagent systems, a novel approach to measuring system performance based on
measurements of communicative processes among agents. We argued that CBPM mea-
sures are particularly suitable asindicatorsfor the self-diagnosis of autonomic comput-
ing systems, where manager agents conduct these measurements and take appropriate
steps to spawnself-repairandself-optimisationprocesses.

Our examples of measurements in implemented, large-scale, market-based MAS
proved that these measurements provide guidance for such managers, and that they can
help improve system performance inopensystems even without direct access to agents’
internal control mechanisms. When employing the full analytical power of CBPM, even
simple actions such as reducing message limits or adopting different protocols for the
system may significantly influence the global behaviour of the system.

The problem that remains is the online derivation of these performance measures for
any given domain. Obviously, this is not an easy enterprise, and much of this process
will still rely on the experience of the software engineer. So far, however, we can state
that at least for the decisions to be made in our examples, the framework of CBPM sup-
ports the process of evaluation. Future work will focus on how agents can be designed
that embody elaborate self-diagnosing capabilities and that are able to effectively mon-
itor and improve system behaviourautomatically. More specifically, we aim at combin-
ing the CBPM approach with more elaborate methods for communication analysis at a
moresemanticlevel, in a similary way as that proposed for the evolutionary develop-
ment of open MAS through human designers in the EXPAND [2] method.

References

1. AgentCities. http://www.agentcities.org, 2003.
2. W. Brauer, M. Nickles, M. Rovatsos, G. Weiß, and K. F. Lorentzen. Expectation-Oriented

Analysis and Design. InProceedings of the 2nd Workshop on Agent-Oriented Software En-
gineering (AOSE-2001) at the Autonomous Agents 2001 Conference, volume 2222 ofLNAI,
Montreal, Canada, May 29 2001. Springer-Verlag, Berlin.

3. J. Cao, D. J. Kerbyson, and G. R. Nudd. Performance evaluation of an agent-based resource
management infrastructure for grid computing. InProceedings of the 1st IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid, Brisbane, Australia, pages 311–318,
2001.

4. M. Dikaiakos, M. Kyriakou, and G. Samaras. Performance evaluation of mobile-agent mid-
dleware: A hierarchical approach. In G. P. Picco, editor,Proceedings of the 5th IEEE Inter-
national Conference on Mobile Agents, volume 2240 ofLecture Notes in Computer Science,
pages 244–259, Berlin et al., 2001. Springer-Verlag.

5. R. Dumke, C. Rautenstrauch, A. Schmietendorf, and A. Scholz, editors.Performance Engi-
neering, volume 2047 ofLecture Notes in Computer Science. Springer-Verlag, Berlin et al.,
2001.

6. FIPA. FIPA (Foundation for Intelligent Agents), http://www.fipa.org, 2003.
7. N.R. Jennings. On agent-based software engineering.Artificial Intelligence, 117:277–296,

2000.
8. Y. Labrou and T. Finin. A Proposal for a new KQML Specification. Technical Report TR CS-

97-03, Computer Science and Electrical Engineering Department, University of Maryland
Baltimore County, Baltimore, MD, February 1997.

9. V. Parunak. Industrial and practical applications of DAI. In G. Weiss, editor,Multiagent
Systems, pages 377–421. The MIT Press, Cambridge et al., 1999.

10. IBM Research. Autonomic computing, http://www.research.ibm.com/autonomic/, 2003.
11. M. Schillo, C. Kray, and K. Fischer. The Eager Bidder Problem:A Fundamental Problem

of DAI and Selected Solutions. InProceedings of the First International Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’02), pages 599–607, 2002.

12. R.G. Smith and R. Davis. Frameworks for cooperation in distributed problem solving.IEEE
Transactions on Systems, Man, and Cybernetics, SMC-11(1):61–70, 1981.

13. M. J. Wooldridge. Agent-based software engineering.IEE Proceedings on Software Engi-
neering, 144(1):26–37, 1997.

