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Abstract. With the growing usage of the world-wide ICT networks,
agent technologies and multiagent systems are attracting more and more
attention, as they perform well in environments that are not necessarily
well-structured and benevolent. Looking at the problem solving capac-
ity of multiagent systems, emergent system behaviour is one of the most
interesting phenomena, however, there is more to multiagent systems de-
sign than the interaction between a number of agents: For an effective
system behaviour we need structure and organisation. But the organisa-
tion of a multiagent systems is difficult to specify at design time in the
face of a changing environment.
This paper presents basic concepts for a theory of holonic multiagent
systems to both provide a methodology for the recursive modelling of
agent groups, and allow for dynamic reorganisation during runtime.

1 Introduction

A multiagent system (MAS) consists of a collection of individual agents, each
of which displays a certain amount of autonomy with respect to its actions
and perception of a domain. Overall computation is achieved by autonomous

computation within each agent and by communication among the agents. The
capability of the whole MAS is an emergent functionality that may surpass the
capabilities of each individual agent [19, 20]. An extremely useful feature in terms
of reduction of complexity for the designer of a MAS is that an overall task can
be broken down into a variety of specific sub-tasks, each of which can be solved
by a specific agentified problem solver.

Jennings notes that ”the development of robust and scalable software systems
requires autonomous agents that can complete their objectives while situated in
a dynamic and uncertain environment, that can engage in rich, high-level so-
cial interactions, and that can operate within flexible organisational structures”
[9]. Agents acting in organisational structures can encapsulate the complexity of
subsystems (simplifying representation and design) and modularise its function-
ality (providing the basis for rapid development and incremental deployment).
Organisations are social structures which have mechanisms of conflict resolution
resulting from previously resolved problems or conflicts [7]. They institutionalise
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anticipated coordination, which is especially useful for medium- and large-scale
applications that require limitation of the agents’ communication behaviour.

With this work, we provide some terminology and theory for the realisation of
dynamically organised societies of agents. The central concept for our endeavour,
which has been iteratively tested, developed, and applied in a series of projects
over the course of several years, is the holonic multiagent system. According to
Arthur Koestler [12], a holon is a self-similar or fractal structure that is stable
and coherent and that consists of several holons as sub-structures. Koestler gives
biological examples. For instance a human being consists of organs which in
turn consist of cells that can be further decomposed and so on. None of these
components can be understood without its sub-components or without the super-
component it is part of.

Many distributed problems exhibit an inherent structure and we need to
mirror this structure in the structure of the relationship between (agentified)
problem solvers. For this purpose in a holonic multiagent systems, an agent that
appears as a single entity to the outside world may in fact be composed of many
sub-agents and conversely, many sub-agents my decide that it is advantageous to
join into the coherent structure of a super-agent and thus act as single entity —
just as the swarm of a certain species of fish sometimes takes on the appearance
of a (much bigger) fish. We call agents consisting of sub-agents with the same
inherent structure holonic agents.

Section 2 gives a formal definition of multiagent systems in general. In Section
3, we extend this to a formal definition of holonic multiagent systems building
on previous work in this area [5, 6, 8], and highlight the diversity of groupings
(links of varying nature between agents and recursion) that are possible with
this concept. Section 4 compares the notion of holonic multiagent systems to
holonic manufacturing systems.

2 Abstract Specification of Multiagent Systems

For any software system, it is common practice to distinguish the static spec-
ification of the system from its runtime instance. While concepts and theories
for the static specification of software systems are reasonably well-understood,
concepts and theories for the specification and analysis of the dynamic behaviour
of a software system are by far not as sophisticated. This is especially true if
we look at MAS, in which self-organisation is an important aspect. This makes
MAS different from systems that are designed according to a more traditional
software development paradigm.

We assume that there is some infrastructure which supports the agents in the
process of self-organisation. For example, the FIPA1 initiative has established
standards for such infrastructures in an open environment. This paper takes a
more abstract point of view, which assumes that there is an agent directory
service (ADS) which allows the agents to find out how they can contact other

1 See http://www.fipa.org/
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agents that currently exist in the system. This means that we require that the
ADS provides at least a white pages service, where agents can inquire the ad-
dresses of other agents. Other services like yellow pages, i.e. the information on
which services are offered by specific agents, may also be provided by the ADS.
However, this and possibly other more general services could also be introduced
by other specialised agents of the MAS.

To describe a concrete MAS for a given application domain, we specify
a set of prototypical agents. This static description of the MAS is given by
MASprot := (Aprot, ADS), where
Aprot is the set {A1, . . . , An}, n ∈ N of prototypical agents, instances of

which can be dynamically introduced into the system. These agents
are the potentially available problem solvers, where several instances
of a specific prototypical agent can be created.

ADS is a specialised prototypical agent providing an agent directory service.
We assume that instances of this finite set of agent types can be dynamically

introduced into the MAS that executes (i.e. works on a specific problem) in a
given application domain.

The process of problem solving starts with the initial agent system

MAS init = (Ainit, ADSinit) where

Ainit = {A1

1
, . . . , A1

k1
, . . . An
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, . . . , An

kn
}, k1, . . . kn ∈ N and
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j ∧ Ai ∈ Aprot.
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j (read “Ai is instantiated by Ai
j”) denotes that Ai

j is an instance of

the prototypical agent Ai. This means that Ai
j inherits its behaviour and initial

knowledge from Ai but may also have additional knowledge (like for example its
unique identification which can be used as an address to communicate with Ai

j).
Note that the explicit introduction of ADSinit does not necessarily mean

that the MAS is closed in the sense that the system engineer is in control of all
parts of the system. We can assume that ADSinit represents some ADS, which is
already available and which has the state of ADSinit at the time when the first
agent of the part of the system that is under the control of the system engineer
is started. Along the same line of reasoning we can assume that some of the
agents in Ainit were also not designed by the software engineer but represent
agents that are available in the open environment. Let us without loss of gen-
erality assume that Aopen = {A1

1
, . . . A1
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, . . . Am

1
, . . . Am
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} for some 1 ≤ m < n

represents the set of these agents. The specification for the corresponding proto-
typical agents A1, . . . Am is likely to be incomplete in the sense that the system
engineer who designs Aprot only needs to have the information about A1, . . . Am.
This is actually needed for the rest of the agents in Aprot to use services that
are offered by the former set of agents.

From MASinit the dynamic MASt evolves as

MASt = (At, ADSt) where

At = {A1,t
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}, l1, . . . , ln ∈ N and
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∀A
i,t
j ∈ At : Ai

I A
i,t
j ∧ Ai ∈ Aprot.

I (read “is transformed into”) denotes B ◦  ∗ which means that we have
Ai
B Ai

j where Ai
j ∈ Ainit and Ai

j  
∗ A

i,t
j where  denotes the transformation

of Ai
j by a single step of computation.

The computation goes on while the agents send and receive messages. New
agents may be introduced and some of the active agents may be terminated.
Each agent has a unique address, which an agent can make accessible to all
other agents by registering with the ADS agent. All agents automatically know
the identification of the ADS agent.

3 Holonic Multiagent Systems

Multiagent systems represent a new problem solving paradigm [1], where the
difficult specification at design time of how a problem should be solved, is all
well come by the interaction of the individual agents at run-time and the idea is
that the solution of a given problem emerges from this interaction. Looking at
nature, an ant hive is a well-known intuitive case, which demonstrates emergent
problem solving behaviour :It is impossible to explain the overall behaviour
of an ant hive just by the behaviour of an individual ant and the removal of
even a significant part of the hive and does not necessarily influence the overall
behaviour. Though some parts of the hive seem to be more important than
others. Although interesting results have been presented using this approach to
problem solving, emergent problem solving behaviour has also been criticised to
provide inefficient or even undesirable results.

Divide and conquer is a widely accepted problem solving paradigm of com-
puter science. Here, a centralised problem solving entity accepts a task, separates
it into sub-tasks and distributes these sub-tasks to decentralised problem solvers.
The problem solvers produce solutions for the sub-problems and send these so-
lutions back to the centralised problem solver which integrates the solutions of
the sub-problems into an overall solution for the original task. This approach
to problem solving is of course much more structured than the pure emergent
problem solving paradigm. The contract-net protocol [17] is a widely-accepted
problem solving model in based on the divide and conquer model, where the
centralised problem solving entity, called the manager for the task, separates the
overall task into sub-tasks. The manager uses a bidding procedure (a first price
sealed bid auction) to find the most appropriate decentralised problem solver for
each of the sub-problems. The integration of the solutions of the sub-problems
into an overall solution is again done by the manager. This procedure can be
recursively nested, i.e. the decentralised problem solvers can again use the con-
tract net model to find a set of further problem solvers who are able to solve the
given sub-sub-task.

3.1 Definition of a Holonic Multiagent System

The concepts of fractal and holonic system design in manufacturing were pro-
posed to combine top-down hierarchical organisational structure with decen-
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tralised control, which takes the bottom-up perspective [18, 3]. Although it is
possible to organise holonic structures in a completely decentralised manner,
for efficiency reasons it is more effective to use an individual agent to repre-
sent a holon. In some cases, one of the already existing agents is selected as the
representative of the holon based on a fixed election procedure. In other cases
a new agent is explicitly introduced to represent the holon during its lifetime.
Representatives are called the head of the holon, the other agents in the holon
are called body. In both cases, the representative agent represents the shared
intentions of the holon and negotiates these intentions with the agents in the
holon’s environment as well as with the agents internal to the holon. Only the
head communicates with the outside of the holon. The binding force that keeps
head and body in a holon together can be seen as commitments [16].

Using the formalisation of Section 2, the set H of all holons in MAS t is
defined recursively:

– for each a ∈ At, h = ({a}, {a}, ∅) ∈ H, i.e. every instantiated agent consti-
tutes an atomic holon, and

– h = (Head, Subholons, C) ∈ H, where Subholons ∈ 2H\∅ is the set of holons
that participate in h, Head ⊆ Subholons is the non-empty set of holons that
represent the holon to the environment and are responsible for coordinating
the actions inside the holon. C ⊆ Commitments defines the relationship
inside the holon and is agreed on by all holons h′ ∈ Subholons at creation
of the holon h.

A holon h behaves in its environment like any other agent in At. Only at closer
inspection it may turn out that h is constructed from a set of agents. As any
head of a holon has a unique identification, it is possible to communicate with
each holon by just sending messages to their addresses. Given the holon h =
(Head, {h1, ..., hn}, C) we call h1, ..., hn the subholons of h, and h the superholon

of h1, ..., hn. The set Body = Subholons\Head (the complement of Head) is the
set of subholons that are not allowed to represent holon h. Naturally, holons h′

are allowed to engage in several different holons at the same time, as long as this
does not contradict the sets of commitments of these superholons. We will now
outline a treatment of C, a more detailed coverage of this topic can be found in
[15].

3.2 Holonic Organisation

For the implementation of a holonic multiagent system, we need to turn to more
fine grained issues concerning the commitments that define the intra-holonic re-
lationship. Let us look at some general possibilities for modelling holonic struc-
tures. The following notions differ in the degree of autonomy the subholons have
and cover the spectrum from full subholon autonomy to a complete lack of au-
tonomy.
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Fig. 1. A holon as a set of autonomous agents.

Fig. 2. Several agents merge into one.

A holon as a set of autonomous agents At one end of the spectrum is a model
which assumes that the subholons are fully autonomous agents with their pre-
defined architecture and the superholon is just a new conceptual entity whose
properties are made up by the properties of the subholons. Figure 1 displays
this constellation. In this case no agent has to give up its autonomy, and the
superholon is realised exclusively through cooperation among the subholons.
The most transparent way of cooperation for this is an explicit coordination by

commitment via communication, i.e., agents negotiate over joint plans, task dis-
tribution or resource allocation. If commitments can not be established through
communication, implicit coordination can be achieved in two ways: either, the
holons are designed such that a goal directed common behaviour emerges from
the behaviour of the sub-agents, or some subholons are able to represent goals
and intentions of other agents and reason about them; thus, they coordinate
their actions without or at least with little communication.

The representation of a holon as a set of autonomous agents is in a sense just
another way of looking at a traditional multiagent system. The holon entity itself
is not represented explicitly as a piece of code. In this case, holonic structures are
only a design aid for structured agent-oriented programming. This is formally
described as holon h = ({A1, A2, A3, A4}, {A1, A2, A3, A4}, Cautonomous).

Several agents merge into one The other extreme of the design spectrum termi-
nates the participating sub-agents and creates a new agent as the union of the



7

Fig. 3. A holon as a moderated association.

sub-agents with capabilities that subsume the functionalities of the sub-agents
(see Figure 2). In this case the merging agents completely give up their auton-
omy but they may be re-invoked when the superholon is terminated. Naturally,
this is a new atomic holon h = ({A}, {A}, Cmerge).

The realisation of this approach assumes procedures for splitting and merging
holons that lead to the creation of a new agent. For agents of the same kind with
an explicit representation of goals and beliefs (e.g., BDI agents) merging can be
achieved by creating an agent with the union of the sub-agents’ beliefs and goals
provided consistency. Especially for a heterogeneous sets of agents this can be
intractable and in either case may not be very desirable.

A holon as a moderated association The two solutions above are extremes and
only useful in very specific circumstances. Hence, we shall propose a continuum,
the border lines of which are the two above architectures. Consider a hybrid
way of forming a holon, where agents give up only part of their autonomy to
the superholon (cf. Figure 3). From a software engineering point of view (in
terms of reducing complexity) it is advisable to allow only for a single head
which represents the superholon to the rest of the agent population (to reduce
coordinational effort). Its competence may range from purely administrative
tasks to the authority to give directives to other subholons. Furthermore, the
head may have the authority to plan and negotiate for the holon on the basis
of its subholons’ plans and goals, and even to remove some subholons or to
incorporate new subholons. Figure 3 visualises this approach with an example
resulting in a holon h = ({A1}, {A1, A2, A3, A4}, Cassociation).

Several ways to determine the head are possible. Either, a new agent is cre-
ated for the lifetime of the holon, or one of the members of the holon takes the
role of the head and gains the additional functionality. Or, either one member of
the holon is pre-destined for the leadership or an election procedure is needed to
promote one of the agents to leadership. Depending on the application domain,
the competence of the representative may vary: the resulting structure can range
from a loosely moderated association to a authoritative, hierarchical structure.
However, the members of the superholon are always represented as agents, and,
hence, we do not lose the capability to solve problems in a distributed fashion.
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This approach allows for an explicit modeling of holons, a flexible formation
of holonic associations, and a scalable degree of autonomy of the participating
agents that are subject to negotiation and make up the commitments Cassociation

of the superholon (for a more detailed discussion see [15]). The most challenging
problem in this design is the distribution of individual and overall computation
of the holonic multiagent system.

4 Holonic Multiagent Systems vs. Holonic Manufacturing

Systems

Although similar in name, there are several important differences between holonic
multiagent systems as proposed here and holonic manufacturing systems as pre-
sented in the literature (e.g. [4, 14]):

– Modelling the recursion of agent grouping is an integral part of holonic mul-
tiagent systems. Mirroring the complex composition of a task, holonic agents
can engage in a complex nested structures and nested structures of arbitrary
depth are possible and meaningful (depending on the complexity of the task).
This is not the case for holonic manufacturing systems.

– Holonic manufacturing systems make no assumption about the internal ar-
chitecture of the head of a holon, it is only required to act as the control
unit. For holonic multiagent systems however, the head is required to possess
agent properties (cf. [21]).

– The head of holonic multiagent systems are not required to co-ordinate the
work of a physical resource, but instead co-ordinate the work of several
information agents that exist only virtually (information agents collaborating
for increase of efficiency, to combine competencies or resources, to resolve
bottlenecks).

– Holonic manufacturing systems use a market metaphor to design inter-holon
co-ordination. Research on holonic multiagent systems is concerned with
choosing long-term partners (and is thus related to coalition formation) as
well as researching the diversity of possible organisational structures [11].

– In a holonic multiagent system, a holon is not a piece of code. It is merely
a concept that is realised by commitments between agents (which exist as
code) to maintain a specific relationship concerning goals and has as a result
an emergent structure between agents.

While this shows the conceptual differences, it does not rule out the application
of holonic multiagent systems to the manufacturing domain, which we have done
successfully in several industrial projects.

5 Applications

The proposed theory has been iteratively tested, developed, and applied in a
series of projects over several years with a big variation in requirements. In one
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domain (flexible manufacturing) agents form holons because they have different
abilities and can only as a group achieve the task at hand [5]. A second example
(train coupling and sharing) demonstrates that even in a setting where we have
agents with identical abilities holonic structures can be beneficial [13]. Several
other projects focused on special aspects of holonic modelling (e.g. RoboCup [10],
Socionics [15]) The most striking application that used the presented approach
to holonic multiagent systems is the TeleTruck system, which was designed
to do order dispatching in haulage companies [2].

In this system, the basic transportation units (trucks, trailers, drivers, chas-
sis, and containers) are modeled by agents which temporarily form holons that
represent vehicles for the execution of transportation tasks. The vehicle holons
are headed by a special agent that is equipped with planning capabilities. All
the vehicle holons and the agents representing currently idle transportation units
form a super-holon that represents the whole transportation company. The head
of the company holon, called the company agent coordinates the interaction with
the user and communicates with other companies that employ the TeleTruck

system. Agents representing transportation units are autonomous in their deci-
sion to participate in a vehicle holon. Participating in the holon however restricts
the autonomy of the subholons for this time span, since they have to execute the
sub-tasks allocated to them. The agents forming a vehicle holon cooperate in
order to pursue the goal of executing a set of transportation tasks. Sometimes,
even different vehicle holons cooperate for a task. A vehicle holon is able to
transport the cargo, which none of its components could do on its own.

6 Conclusion

The paper presents a general framework for holonic multiagent systems, whose
advantage is threefold. First, the model preserves compatibility with standard
multiagent systems by addressing every holon as an agent, whether this agent
represents a set of agents or not. The complexity of a group of agents is en-
capsulated into a holon represented by its head, the number of agents involved
in the holon becomes irrelevant for other agents communicating with it. Sec-
ondly, holonic multiagent systems are one way to introduce recursion into the
modelling of multiagent systems, which has proven to be a powerful mecha-
nism in software design. Of course a holonic multiagent system is more than
just the recursive decomposition into its agents, as we have solved the addi-
tional structure preserving problem. Third, there is no restriction to a specific
or static association between agents, so it leaves room to introduce a variation
of organisational concepts, which can dynamically change at run-time. There is
no comparable programming construct that would support the design of such
systems in a purely object-oriented programming approach.
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