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ABSTRACT
The contract net protocol is a widely used protocol in DAI, as
it proved to be a flexible and low communication interaction
protocol for task assignment. It is however not clear in which
manner agents participating in a contract net should allocate
their resources if a large number of contract net protocols
is performed concurrently. If the agent allocates too many
resources too early, e.g. when making a bid, it may not get
any bid accepted and resources have been allocated while
other negotiations have come to an end and it is no longer
able to make bids for them. If it allocates resources too late,
e.g. after being awarded the contract, it may have made bids
for more tasks than its resources allow for, possibly all being
accepted and resulting in commitments that cannot be kept.
We call this dilemma the Eager Bidder Problem. Apart from
resource allocation this problem is of further importance as
it constitutes the ”dual” problem to engaging in multiple
simultaneous first-price sealed-bid auctions.

We present an ad hoc solution and two more complex
strategies for solving this problem. Furthermore, we intro-
duce a new method based on a statistical approach. We
describe these mechanisms and how they deal with the con-
cept of commitment at different levels. There is no optimal
solution for every problem setting, but each has advantages
and disadvantages. Our discussion concludes with criteria
for the decision which of these mechanisms is best selected
for a given problem domain.

1. INTRODUCTION
The assignment of tasks to agents and the (re-)allocation

of tasks in a multiagent system (MAS) is one of the key fea-
tures of automated negotiation systems [20]. The contract
net protocol, originally proposed in [18], and other more gen-
eral auction mechanisms can be widely applied to resource
and task allocation problems. The contract net has been ap-
plied e.g. to online dispatching in the transportation domain
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[1, 5], meeting scheduling [6, 16] and flexible manufacturing
[17, 11, 9]. Although researchers tried to deal with proba-
bilistically known future events, little work has been done
on specifying strategies that help an agent to make reason-
able decisions when several contract nets are concurrently
active. With recent developments of small transaction com-
merce on the Internet for purchasing goods and information,
this problem will become relevant and the trend to virtual
enterprises and agile manufacturing (cf. [11]) will make this
even more demanding. In these coordination processes, the
notion of commitment (and its semantics) is central [8]. In
these settings the agents will face the situation that they
have to decide in how many of the concurrent negotiations
they intend to participate and how they should handle their
commitments with respect to the local resources at hand.
Travel agencies doing flight reservations are a practical ex-
ample of multiple contracting negotiations that are going on
in parallel. The overbooking of seats in airplanes is an ap-
plication where the companies in addition to mathematical
tools use experience to calibrate coefficients for the risk es-
timation.
For the application of MAS technology this means that if
there is only one source for tasks, i.e. there is only one man-
ager who announces tasks, then the bidders do not have
much of a choice. They will try to do their best by partic-
ipating in the CNPs that are initiated by this source. The
usual strategic bidding [12] will then depend on whether the
pure CNP is used or alternative, truth-revealing mechanisms
such as for example the Vickrey auction [19] (which in turn
is known to be only truthrevealing depending on certain as-
sumptions). The problem changes dramatically if we assume
that there are several sources of tasks and that the agents
have only limited resources to actually execute tasks. In this
case the agent has to decide how many of the CNPs that
are active it is actually going to participate and which kind
of offer it wants to send to the managers of those CNPs.
The following sections present a systematic discussion on
mechanisms that can be used to solve the problem and how
they deal with the concept of commitment at different lev-
els. There is no optimal solution for every problem setting,
but the protocols have advantages and disadvantages. Our
discussion concludes with criteria for the decision on which
of these mechanisms is best selected for a given problem do-
main. Although our discussion concentrates on the CNP,
it is obvious that the general results can be transferred to
other single-shot auctions.



2. THE EAGER BIDDER PROBLEM

2.1 The contract net protocol
Assume we have an agent that has a task that needs to

be done but it does not have the ability or the resources to
do so. The contract net protocol [18] was designed to de-
scribe the communication protocol to determine some other
agent to do the task. Our discussion is based on the FIPA
interpretation of the contract net [3], which is a minor modi-
fication of the original protocol in that it adds rejection and
confirmation speech acts. Currently, this interpretation is
the standard for a whole range of prominent agent platform
implementations [4, 7, 21].
In order to comply with the FIPA standards, we call the
agent with the task initiator (manager in the original), agents
that compete for acquiring the task participants (bidder, re-
spectively). In general, the procedure requires the initiator
to send a call for proposals including a task description to
all participants. They can specify their required costs for
this task in a proposal or refuse to do the task at all. The
initiator then accepts one of these proposals, and rejects all
others. The agent who got his bid accepted is then required
to inform the participant about the result of the task (or
its failure). Note that this protocol requires the initiator to
know when it has received all replies. In the case that a con-
tractor fails to reply with either a propose or a refuse act,
the initiator may potentially be left waiting indefinitely. To
guard against this, the call for proposals includes a deadline
by which replies should be received by the initiator. Pro-
posals received after the deadline are automatically rejected
with the given reason that the proposal was late [3].

2.2 Problem definition
The contract net protocol was designed for distributing

one task among a number of agents. As long as the partici-
pants are not engaged in any other activity, this mechanism
will find the agent, which the initiator prefers most, and will
create a commitment of the accepted agent to perform the
task.

Figure 1: CNP communication.

However, if we assume a large number of initiators and
bounded resources for each of the participants (as is gener-
ally the case in applied multiagent systems), new problems
arise. While several initiators are requesting bids (commu-
nication paths from all white circles to all black circles in
Figure 1), it is a hard problem for each agent to decide
when to allocate the resources for which task. Imagine that
among the agents in a large-size multiagent system there
are m agents with tasks (initiators) and n providers of ser-
vices (participants). While a participant is waiting for being
awarded to do tasks by a possibly large number of initiators,
it may still receive more calls for proposals. The partici-
pant may at this stage not have received any reject-proposal
messages as the initiators are either idle waiting for incom-
ing bids until the end of the deadline (expiration time) or
still busy evaluating the proposals. This is a problem, in
that the bid it would send back to any of the initiators de-
pends on the availability of its resources, in some domains
(e.g. the transportation domain) the cost for a task even

depends on the set of tasks already scheduled. Waiting for
an accept-proposal or reject-proposal message before mak-
ing any further bids will result in deadlocks, or timing out
of the protocol on the side of the initiator, thus terminating
the protocol with fewer proposals than possible. In short,
the problem consists in:

deciding on which resources to allocate in a dis-
tributed setting with more than one initiator in
order to create bids to all incoming call-for-proposals
before the first reject or accept notification is re-
turned.

There exist several alternatives, none of them are satisfy-
ing. If the agent allocates too many resources too early (e.g.
when making a bid), it may not get its bid accepted and
therefore allocate the resources, which then are not avail-
able for other incoming calls for proposals. If it allocates
too late (e.g. when receiving the accept-proposal message),
it may have committed to more tasks than it has resources,
thus causing repeatedly propagating failure to the system
level.

2.3 The Ad Hoc Solution
Let us consider the case where the agent allocates re-

sources at the time of sending the bid. We call this solution
the ad hoc solution. This solution is conservative in that it
makes sure that only correct assignments of tasks to agents
are created, i.e. that every agent only commits to the tasks
it can perform. This is also used as a conservative solution
in open cry auctions, where agents make at most concur-
rent k bids, if they want to purchase k goods (cf. e.g. [10]).
However, if we want to reduce communication and use a sin-
gle shot auction or, as in our case, a contract net protocol,
then agents are only allowed to make a single bid per proto-
col instance, and it is not unlikely that several participants
send their few proposals to a small set of initiators. The
result is that only some of them get a task assigned, while
others remain idle. Therefore, the ad hoc procedure is not
complete in that it will not compute solutions that could be
found with better approaches.
For illustration, consider using the conservative approach in
a setting with 100 initiators, each having one task to as-
sign and 100 participants, each capable of performing one
task. Further consider that the deadlines are set such that
the participants cannot reply to the calls sequentially (oth-
erwise there would be no problem). If in this case every
participant just sends one bid, the chance of getting a bid
accepted assuming lottery on the side of the initiator is ca.
0.641. If other agents make more than one bid, the probabil-
ity is even lower. So in more than one third of all cases, the
available resources of the participant will be idle due to the
conservative strategy. Correspondingly, the same number of
initiators will be left with unassigned tasks, as they did not
get any bids for their tasks.

3. CLASSIFICATION OF SOLUTIONS
Beyond the safe but highly inefficient ad hoc solution,

we will now present a classification of three different ap-
proaches to the Eager Bidder Problem: (i) the leveled com-
mitment approach, (ii) the protocol redesign approach and

1The computation of this probability is out of scope here,
but from the problem chosen, it is in any case clear that the
probability is below 1.



(iii) the statistical approach. What distinguishes the three
approaches is the way they treat commitment: the leveled
commitment approach spends resources on negotiation of
penalties for breaking a commitment. This solves the prob-
lem by introducing a second level (or meta) commitment
about the penalty of breaking a first level commitment. The
protocol design method approaches the problem by delay-
ing the commitment time further in the future to achieve
high efficiency. The statistical method assumes the commit-
ment is important enough to minimize the risk of breaking
it, but it is not essential to the overall task of the system to
guarantee full completion of all tasks.

4. APPROACH 1:
LEVELED COMMITMENTS

Sandholm and Lesser proposed a leveled commitment con-
tracting protocol to give self-interested agents in the context
of automated negotiation the possibility to retract commit-
ments when they face a situation where the future evolves in
an uncertain manner [13, 14]. They show that this leveled
commitment protocol increases Pareto efficiency of deals and
that it can make contracts individually rational when no full
commitment contract can.
This protocol allows an agent to participate in several con-
tract net protocols in a sequential manner. The agent is able
to decommit from commitments to earlier contracts when it
finds out that a new contract is more attractive with respect
to the local payoff for the agent. In doing so, the decom-
mitment penalty has of course to be taken into account.
The leveled commitment approach has been extended by
Excelente-Toledo et al. in that (among other enhancements)
the ongoing cost of participating in the coordination process
is incorporated in the decommitment penalty [2]. However,
Sandholm and Lesser’s discussion does not include the con-
current participation in several contract nets. If the agent
participates in too many contract net protocols at the same
time, they risk to pay too many penalty fees which would
not be an individually rational strategy. We come back to
this problem in Section 6.

5. APPROACH 2: PROTOCOL REDESIGN
The second approach to solve the Eager Bidder Problem

is based on a redesign the protocol to postpone the time of
commitment as far as possible. The major inefficiency in
the CNP is that in every execution of the protocol all par-
ticipating agents need to commit themselves to do the job,
although only one of them will actually be awarded to do
the task. We now present the contract net with confirmation
protocol (CNCP) taken from [15], which precisely addresses
this issue and improves the CNP procedure by drastically
reducing the number of commitments made.

5.1 Procedure
The CNCP (cf. Figure 2) is very similar to the CNP. It

starts with a call for proposals, gathers the responses from
the participants, until the initiator received messages from
all participants or the deadline has passed. As in the con-
tract net protocol, this deadline safeguards that singular
message dropouts do not prevent the whole protocol from
termination. In the original contract net, the participant
makes its commitment in the bidding stage. In the CNCP
this is not the case: the commitment is only made when

the initiator requests that the participant should take over
the task. For this purpose the initiator arranges all bids in a
sorted list and sends requests to all participants starting with
the best bid to find out if they can actually do the job. This
is now easy to decide for the participant, as it knows it will
get the task awarded if it agrees to do it and there is no harm
to make a commitment at this stage. The next participant
is sent a request message if the last participant has sent a
refuse or a deadline has passed. This iteration stops as soon
as one participant replies with an agree message. All other
agents are sent a reject-proposal message (those who have
already received the request and sent the refuse do not need
this message, but this depends on the agent implementation
and it does not interfere with the basic protocol properties).
The participant only needs to commit at the time of sending
the agree message. In order to trigger task execution and to
correspond to the CNP, it is required that the agent sends
an accept-proposal while the participant will reply as it does
in the CNP with failure, inform-done, or inform-ref.

Figure 2: The Contract Net with Confirmation Pro-
tocol.

5.2 Discussion and Analysis
The proposed procedure needs O(n) messages, where n is

the number of participants. In the best case, the CNCP re-
quires only two more messages (the request for confirmation
and the reply to it) while still solving the resource allocation
problem of the participant. In the worst case, the initiator
needs to contact all participants to find out that no one
can do the task. Although this results in an excess of 2n
messages for the CNCP, its great advantage is that it only
requires one single agent to make one commitment. This
is achieved by using the confirmation stage in the proto-
col, to postpone the commitment and allow the participants
to reply to all incoming call for proposals without need to
already allocate the resources at this early stage of inter-
action or to risk penalties for multiply allocating resources.
A minor disadvantage of this approach is that the initiator
possibly needs some overhead to sort the list of participants
according to their bids, while the CNP only requires it to
find the maximum. However, with careful implementation
this additional computational effort for finding the next best
participant is only required at the point where the original
CNP already would have failed.



In order to guarantee termination even in the case of faulty
participants the second deadline of the protocol is necessary.
It makes sure that the next best participant can be sent a
request message and has a chance to receive the task.

6. APPROACH 3: BIDDING STRATEGIES
BASED ON RISK ANALYSIS

The general idea of this new approach is to risk some bro-
ken commitments, as long as the probability of this event
can be evaluated and can in the long run be guaranteed to
be below a certain threshold. This is similar to the statisti-
cal approaches already mentioned in flight booking systems,
which involve the risk of overbooking (as is the common ex-
perience with frequent flyers) but in general work quite well
and have high acceptance in settings where efficient usage
of resources is important. In contrast to these systems, we
do not assume databases containing long-term, past expe-
riences (as they are available in flight booking), but make
some basic assumptions about the distribution of agent be-
havior.

6.1 Risk estimation
As already mentioned, the aim of this approach is to de-

termine for a given risk threshold the number of bids an
agent X can make beyond the amount of resources an agent
has at its disposal. One assumption necessary to cope with
the complexity of the problem is to assume that all agents
apart from X will use the same strategy, i.e. will make iden-
tical choices, albeit different from the choice of X (later in
the discussion section we will show how this assumption can
be relaxed). We do not assume these agents make the same
choice as X.

Let m be the number of initiators, n the number of par-
ticipants, NX the number of bids an agent X is making
(NX < m), and let NA be the number of bids of all other
agents (NA < m).

The first goal we want to achieve is to determine the prob-
ability for agent X of getting one bid accepted when sending
it to a randomly chosen initiator. Once we achieve to com-
pute this probability, we will also be able to evaluate the risk
of getting more bids accepted than we can perform tasks (for
the extension of this approach if the capacity is greater than
one see the discussion section below).

Figure 3: All permutations of other agents choos-
ing the same or a different initiator in an example
probability tree.

Let us first look at the choice any other agent than agent
X is going to make. The number of bids they are going
to make is assumed to be NA. From a probabilistic point
of view, deciding whom of the m initiators to send a bid is
therefore equal to choosing a tuple of the length NA with m

different possibilities to choose each member of the tuple. If
we want to know the probability pc of an agent to choose a
specific initiator for making a bid, we know that one entry of
this tuple is going to be this initiator (with NA possibilities
for the position of this entry in the tuple). The other NA−1
entries will contain the permutations of the other m − 1
initiators, thus ensuring that the entries must be mutually
different. To get the probability for this event, we divide the
number of these tuples by the number of all possible (m)NA

tuples:

pc = NA(m− 1)NA−1
1

(m)NA

= NA
(m− 1)!(m−NA)!

(m− 1−NA + 1)!m!

Evaluating this expression yields:

pc =
1

m
NA (1)

With this tool at hand we will now compute the probability
that agent X gets its bid to one specific initiator accepted.
Firstly, it is certain that it gets the award, if no one else sent
a bid to this initiator. The probability for this case is the
product of multiplying the probability that one agent apart
from X did not choose this initiator, which is 1− pc, n− 1
times multiplied with itself:

(1− pc)
n−1 (2)

This corresponds to the lowest branch in 3. Secondly, we
know that the probability to be chosen by the initiator is
one over the number of agents, which made a bid, as we
here assume a lottery (for strategic bidding see below). We
can also compute the probabilities for all of the cases ”one
agent made a bid to this initiator”, ”two agents made a bid”,
”three agents made a bid” etc.
These probabilities are the product of the probability for
choosing the initiator to the power of the number of cases,
multiplied with the probability for the counter event to the
power of the number of these cases, multiplied with the num-
ber of all possible permutations. This means we get as for-
mula a single sum evaluating the probability pa for agent
X of getting a single bid accepted, taking into account that
with certain probabilities either zero, one, two, or up to n−1
(i.e. all but X) agents may have made a bid to the same
initiator:

pa =

n−1∑
i=0

(
n− 1

i

)
pi

c(1− pc)
n−1−i 1

i + 1
. (3)

The case for zero other participants is already integrated
here (i = 0) as the probability for the case with no other
bids (cf. Formula 2) to this initiator can be appropriately
integrated into the formula. Once we have the probability of
getting a bid accepted by one initiator, we can estimate the
probability (or the risk) to get more than one bid accepted if
we decide to make bids to more than one initiator. Making a
number of bids is like a chain of experiments, each with the
same probability of being successful (in the sense that the
bid is accepted). Therefore we can compute the probability
of having more than one bid accepted as a Bernoulli-chain:

P (T ≥ 2) =

NX∑
i=2

(
NX

i

)
pi

a(1− pa)NX−i. (4)



Now agent X can, given a risk threshold τ , compute the
greatest NX that will still imply a risk RX(NX , NA) =
P (T ≥ 2) smaller than τ .
In order to give provide intuition for this result, we will now
discuss an example configuration and show the range of this
risk for agent X depending on the number of bids made by
others and itself.

Figure 4: The distribution of risk RX(NX , NA), de-
pending on the number NX of bids made by agent
X and the number of bids NA made by each other
agent.

6.2 Example
Assume we have thirty initiators (m = 30) and eighty

participants (n = 80), all initiators with one task, all par-
ticipants with the resources for a single task (for more than
one task, see the discussion section below). If we compute
P (T ≥ 2) for all NX and NA with this configuration, we get
the risk distribution RX(NX , NA) shown in Figure 4. The
distribution displays two behaviors we can also predict by
analysis: if NA is fixed, the risk is increasing monotonously
with increasing NX , and decreasing monotonously with in-
creasing NA, if NX is fixed. This reflects the fact that agent
X is risking more when making more and more bids and
that the risk for agent X is decreasing if the other agents
make more bids and thus decrease the probability that X is
chosen.
This distribution has an impact on the practical use of a
statistical risk taking approach in the contract net proce-
dure. Let us assume rational behavior of all agents, the
same knowledge about the number of participants, and the
same risk threshold τ . In this case, choosing the number of
bids to make can be described as a game in normal form
and we are able to show important properties for this game.

6.3 Game Theoretic Analysis
The given interaction problem can be transformed into

a game in normal form. The set of players S of the game
is S =

{
i|i is a participant

}
(X being one of them). The

set of options of the agents is the number of bids they are
making. This is the set of integers up to the number of ini-
tiators (agents are not allowed by the protocol to make more
than one bid to an initiator): O =

{
k|k ≤ m

}
. The pay-

off matrix M is constructed by inserting the risk computed
by Formula 4. Setting up the matrix including all players
would result in an n-dimensional matrix, making the analy-
sis difficult beyond the scope of this work. Thus, we use the
simplification we made earlier: we assume that all players
apart from X use the same strategy NA (we show in the dis-
cussion session that this assumption does not interfere with

the general argument).
The risk distribution is symmetric in the sense that it does
not depend on which agent we choose for our analysis and
the entries in the pay-off matrix are strictly monotonous.
Figure 5 shows a diagonal cut through the distribution of
Figure 4, displaying the risk for any agent, given that all
other agents choose to make the same number of bids. It
is rational for each agent to make as many bids as possible
in order to increase the expected utility. The upper bound
for the number of bids is the NX where the resulting risk
exceeds τ . In our example NX would be six, if we assume
a threshold of five percent risk (analogously for different τ).
Is there a reason for a single agent to deviate from this so-
lution? Increasing NX is not rational, as for a fixed NA

risk is increasing with increasing NX . On the other hand
decreasing NX is certainly not rational, as making less bids
decreases the expected utility. Thus, this choice is a pure
strategy Nash equilibrium of the game (see our proof in the
appendix for a more precise treatment). Furthermore, due
to the symmetry of the risk distribution and its monotonic
behavior, this is also a Pareto optimal solution. There is no
other combination of choices that will get any agent more
pay-off without reducing the pay-off of some other agent,
while preserving the risk threshold. For the game theoretic
discussion of the interaction it is very important to have
a single pure strategy Nash equilibrium that is also Pareto
optimal, as it stabilizes the agent behavior.

Figure 5: The risk for each agent X, if all agents
make the same number NX of bids.

6.4 Discussion
Of course this approach is acceptable only in domains

which allow for a small number of unallocated tasks, as
dropouts will occur with the specified probability. This ap-
proach is applicable, if the number of tasks is high, the value
of single tasks is low or the tasks contain redundancy.

This mechanism is not restricted to scenarios where initia-
tors have only one task, or participants have only resources
of capacity one. More than one task per initiator is in terms
of the risk computation equal to the case of an additional
amount of initiators as different call for proposals are treated
independently and the identity of the initiator does not play
a specific role. The increase of resources on the side of
the participants results in a change in the estimation of the
”bad” outcomes of the Bernoulli-Experiments. The ”bad”
outcome now is if strictly more than the available capacity c
bids get accepted which yields for the risk of the individual
agent X:

P (T ≥ c + 1) =

NX∑
i=c+1

(
NX

i

)
pi

a(1− pa)NX−i.

Another assumption we can relax is the assumption that
all agents apart from X are choosing the same number of



bids to make. Note that for the design of a single agent
this assumption is still worth considering, because as long
as X has not collected enough data about the behavior of
other agents to discriminate between them, it is well worth
considering that they act in an equal manner. To show that
this mechanism does not sink or swim with this assumption,
we present its extension.
The assumption is important for Formula 1, where we eval-
uate the probability pc of an initiator being chosen by a
participant. This probability relies on NA. If we cannot as-
sume identical choices for all agents apart from X, we need
to introduce NA,i denoting the choice of agent i. This results
in different probabilities pc,i for an initiator to be chosen by
a certain participant. This change does not affect our risk
distribution directly, but through the probability pa for a
participant to be accepted by the initiator. This probability
is now more difficult to write up, as we need to take into
account permutations (in the case with our assumption all
probabilities were the same and could be summarized more
easily). If we look at Figure 3, the change in the argument
lies in the now individually different weights of the branches
in the probability tree. As before in Formula 3 the sum now
consists of the sum of all probabilities for the case of 0..n−1
participants choosing this initiator weighed by 1

i+1
to care

for the probability of being chosen in this case. This sum
itself resists brief notation, but it is a sequence of multipli-
cations and sums and is easy to compute. The result of this
computation is a constant pa, which can be used with For-
mula 4 to compute the risk distribution as already discussed
in the previous section.

7. CONCLUSIONS
Whenever a multiagent approach with multiple concur-

rent CNPs is used for resource allocation, as for example
in multiagent job shop scheduling problems, the system de-
signer faces a variation of the Eager Bidder Problem. We
presented an ad hoc solution as well as three different ad-
vanced approaches, each with different properties. None of
them is the ”silver bullet”, but each has its own pros and
cons.
The leveled commitment approach introduces the concept
of penalties and the option of ”legally” decommitting. It
has maximum flexibility and includes the option of decom-
mitting during run-time with the drawback of more com-
munication (and implementation) effort. Failures result in
penalties paid, restarting the protocol with the assigned but
failed task is assumed. The protocol redesign is a specific
change of the CNP and uses a drastic reduction of the num-
ber of commitments to reach its goal, while in the worst case
it only requires 2n more messages. The statistical method
presented here is easy to compute and the risk estimation
in uncertain environments is straightforward. It requires no
changes to the protocol. This interaction has a pure strat-
egy Nash equilibrium that can be computed easily and is
also Pareto optimal. This is particularly important as it in-
creases the stability of this approach.
The following is a classification of different task assignment
settings where we provide information on which of the men-
tioned approaches from our point of view are satisfying the
settings’ requirements best.
The protocol is not under control of the designer /
the protocol cannot be changed. This is the case with
most open or semi open settings of multiagent systems. In

this case either the conservative strategy or the statistical
approach apply (depending on whether dropouts are accept-
able or not). The other approaches require changes in the
protocol.
Flexibility during runtime as the possibility of de-
committing is necessary. Only the leveled commitments
approach extents the possibility to decommit to the exe-
cution time of a task. It explicitly allows for dealing with
failing agents and their possibility to decommit to perform
a task during runtime.
A quick initial result is desired, as post optimization
is an inherent part of the overall procedure. Here the
statistical approach will help, as during post-optimization
the failure cases can be eliminated. It is also possible here
to let the agents bid with no commitment at all, but this will
return worse solutions than the statistical approach. Note
that every protocol stage guarded with a deadline is a poten-
tial source of delay and the leveled commitment approach,
and to some extent the CNCP are disadvantageous in this
respect.
Low amount of messages is most important. The con-
servative approach is best in terms of messages sent, as bids
can only be made for the amount of resources available. All
other approaches make more bids. If the allocation should
be more efficient than with the conservative approach, the
statistical approach applies. The statistical approach will
produce only a limited number of messages more than the
conservative approach, which can be configured by choosing
the threshold. The CNCP is less applicable, as it gives in-
centives for making bids to every incoming cfp, as there is
always a chance to be awarded the task, but it reduces the
communication overhead to a minimum and provides better
results. The leveled commitment approach produces most
messages, as there is an incentive to bid everywhere and
to communicate about the penalties involved, including the
possibility of counterproposals.
Robust behavior when facing failing agents/dropouts.
Only the leveled commitment approach deals with the case
of agents failing during task execution time explicitly. All
approaches provide the possibility to restart the procedure
in case an accepted participant fails to perform the task.
The CNCPs advantage is that it stores the list of possible
alternatives without requiring a commit for the participant
to be in this list. So a call for proposals does not have to
be sent to all participants but only those remaining in the
list. Deadlines are part of all the procedures, as well as the
FIPA version of the CNP. Thus, in case a single agent fails to
reply, there is no danger of a deadlock. However, as the lev-
eled commitment approach allows for many messages being
sent, the increased number of messages requires an equally
high number of deadlines, possibly causing long delays when
facing dropouts.
As a conclusion, it is up to the designer to choose for a given
domain the most appropriate approach and we believe we
provided some helpful arguments for this decision.

8. FUTURE WORK
The presented work is restricted to the CNP, where there

is only a task that needs to be assigned to a single agent.
We are interested in repeating our work with the case where
the initiator assigns a composed task, where it is not clear
at the start of the protocol, which group (you might want
to say coalition) of agents is capable of solving this task.



For the analysis in the statistical approach it was necessary
for us to assume that no agent makes use of further infor-
mation for strategic bidding. However, in many cases, the
height of the bid is not arbitrary as some assumptions about
costs and the bids of others may be made. Therefore, in our
future work we want to take into account the strategic choice
of the bid and reevaluate the probabilities for getting a bid
accepted given some distribution over an interval of possible
bids. Currently we are working on extending this approach
to include a sanctioning mechanism, i.e. we introduce a co-
efficient ρ that expresses which part of the pay-off the agent
looses if it committed to a task it cannot perform in the
end. Here, ρ can be smaller or greater one. We will then
repeat the analysis presented here with the expected total
pay-off including the expected sanction, without consider-
ing the risk threshold. We believe that this describes more
accurately the agents’ and the system’s behavior in the long
run.
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APPENDIX
The following will prove the existence of one pure strategy
nash equilibrium that is also Pareto optimal for the statisti-
cal approach as described in Section 6. The proof consists of
several parts. After some definitions we will first show that
there is one pure strategy Nash equilibrium in the game and
that it is the only pure strategy Nash equilibrium. We then
show that this Nash equilibrium is also Pareto optimal. This
proof also applies to the n-player game as described in Sec-
tion 6.4.
STEP 1:(Preliminary assumption) We assume here n = 2,
i.e. we will first look at a two player game between agents
X and Y (See Step 8 for the relaxation of this assumption).
Think of Figure 6 as the birds-eye-view of Figure 4. The
arrows indicate that the risk RX(NX , NY ) is decreasing for
increasing NX and for decreasing NY . This means that the
risk for agent X is increasing with making more bids and
decreases with other agents making more and more bids.
STEP 2: (Location of the Nash equilibrium, formulation
of the theorem) Only those cells of the matrix are acceptable
for both players where the following conditions hold:

RX(N∗
X , NY ) < τ and RY (N∗

Y , NX) < τ.

It is each agents’ aim to maximize the chance of getting a
bid accepted and therefore to make as many bids as possi-
ble, while restricting the risk of getting more bids accepted
than capacity available to a threshold τ .



Theorem: Let c(i, i) be the cell on the diagonal, with great-
est i limiting the risk RX(NX , NY ) to τ for both agents.
Then c is the single pure strategy Nash equilibrium of the
game and c is also Pareto optimal.
STEP 3: (c is a pure strategy Nash equilibrium)
Lemma: Cell c is the choice in the game with Nash equi-
librium. It holds for both agents that, with fixed opponent
choice, every cell in the grid either a) yields a lower chance
to get bids accepted than cell c or b) has a risk above the
risk threshold τ .
Proof: Without loss of generality we choose to prove the
lemma for agent X. Due to the symmetry of the risk dis-
tribution, the same holds for agent Y . The proof is based
on refuting the contradiction and a discrimination into two
cases. For both we will assume that there is a c′ that con-
tradicts the theorem and then refute this assumption. As
stated in the theorem, NY is fixed (for agent Y with fixed
NX).
Case 1: Let c′ be a cell with NX (number of bids) smaller
than i. It follows that the chance to get a bid accepted is
smaller. Therefore c′ is not a better choice than c, hence
supporting the theorem.
Case 2: Let c′ be a cell with number of bids greater than
i (light gray cells marked 2b in Figure 6, 2a for the proof
with agent Y , respectively). The higher number of bids in-
creases the chance of getting bids accepted. To render c′ a
better choice than c, it is necessary to fulfil part b) as well:
maintaining the risk threshold. If any cell with higher bids
for agent X (any of the light gray cells) is below the thresh-
old, then, according to the monotony on the NX -axis, the
neighbor c′′ of c must be below the threshold as well.
When choosing c, we found that c′′′ was a cell above the
threshold: remember that c was constructed to be the cell
on the diagonal yielding maximum bids accepted, while re-
specting the threshold. According to the monotony on the
NY -axis, if c′′′ is above the threshold and not acceptable,
then c′′ is above the threshold and not acceptable as well.
Therefore c′′ and c′ cannot be better results to the game for
X, again supporting the theorem.

Figure 6: Overview on the risk distribution matrix.

For both cases the negation of the theorem was refuted.
We will now show in steps 4 to 6 that no other cell is ac-
ceptable and a pure strategy Nash equilibrium. For this part
of the proof, we divide the matrix into different parts and
prove for each that there is no other Nash equilibrium.
STEP 4: (Quadrant 1) In quadrant 1 there cannot be an-
other Nash equilibrium as the cell c(i, i) according to the

monotony of the risk distribution fully dominates every cell
in this quadrant.
STEP 5:(Quadrants 2a/2b) In Figure 6 the areas 2a and
2b are shown in light gray, their overlapping area is in dark
gray. From Case 2 of the proof of the theorem of Step 3
it follows that the light gray areas are not acceptable: the
condition of Step 1 does not hold for them. As in this proof,
the other cells of the diagonal are not acceptable, causing
that the neighbors to their right and below the diagonal are
also not acceptable.
STEP 6: (Quadrants 3 and 4) For our proof, these two ar-
eas are the two most problematic ones as they contain some
cells for which the condition holds. These cells are not easy
to identify, as this depends not only on the basic properties
of the risk distribution, but on the threshold τ and the ac-
tual value of the risk distribution. However, we can show
that each of the remaining two areas is not acceptable for
one of the two players (though they are acceptable for the
other). Let us first look at quadrant 3.
For agent X any of these cells are not a pure strategy Nash
equilibrium, as they are dominated by the cells to the right
of c: c∗(i..m, i). For X these cells are acceptable as c is
acceptable for X and the risk is decreasing for X from c
to its neighbors on the right. Thus, X has an incentive to
deviate from any chosen cell in quadrant 3. The same holds
for quadrant 4 in analogy.

From steps 4 to 6 it follows that there exists no other pure
strategy Nash equilibrium apart from the one shown in step
3.
STEP 7: (c is Pareto optimal) To show this, we need to
prove that there exists no other cell c∗ that would give any
player higher pay-off without causing one player to loose
pay-off. We show that c∗ is not in any quadrant of the ma-
trix.
Quadrant 1: Due to the monotonic behavior of the risk
distribution for player X, the cells in column k are domi-
nated by the cells (k, i). These cells are dominated for X by
c. In analogy, for player Y , the cells in row k are dominated
by the cells (i, k). These cells are dominated for Y by c.
From this it follows that no cell in the quadrant is dominat-
ing c, which would be the prerequisite for c not being Pareto
optimal.
Quadrant 2a/b: As shown in Step 5, these cells are not
acceptable for both players. Thus they cannot contain c∗.
Quadrants 3 and 4: Any cell in this quadrant can be
written as cell (i + l, i + k), with k, l, being positive inte-
gers. For agent X the pay-off is decreasing from cell (i, i) to
cell (i + k, i) and decreasing again from cell (i + k, i) to cell
(i + k, i + l). Quadrant 4 is the analog case of quadrant 3
for agent Y . As for any cell in these quadrants at least for
one player pay-off is decreasing, c∗ cannot be in quadrant 3
or 4.
None of the quadrants can contain c∗, therefore c is Pareto
optimal.
STEP 8: (For n-players) The only assumptions we made
here are the fundamental monotony and symmetry proper-
ties of the risk distribution. Introducing more players adds
new dimensions to the matrix, while the monotony of the
risk distribution is preserved: making more bids still implies
higher risk for any agent X, other agents making more bids
implies a decreasing risk for agent X. �


